检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院上海光学精密机械研究所,上海201800
出 处:《表面技术》2014年第5期105-108,123,共5页Surface Technology
摘 要:目的通过SRIM程序模拟,对石英玻璃金属化工艺进行优化。方法对不同情况界面进行对比分析,配合SRIM程序模拟,得出理想的金属化界面,提出通过增加阻挡层的方法来得到这种界面。分析SRIM程序模拟结果,选取阻挡层分别为5,10,15,20nm四种厚度,模拟能量20keV的Ti离子注入不同厚度阻挡层样品中的射程分布,获取合适的阻挡层厚度,并利用高低温冲击方法进行验证。结果合适的阻挡层厚度范围为10~15nm,在此范围内,注入的Ti离子最大浓度位置集中在金属化层与石英玻璃之间的界面附近。结论利用SRIM程序模拟可以得出最佳的阻挡层厚度范围,提高金属化层的性能。Objective To optimize the process of quartz metallization through SRIM simulation. Methods Though comparative analysis of different interfaces combined with SRIM simulation, the ideal metallization interface was obtained. The approach of adding the blocking layer was put forward to get the interface. The SRIM simulation results were analyzed, and four kinds of thick- ness (5, 10, 15, 20 nm) were selected. The range distribution of Ti ion with the energy of 20 keV implanted into specimens of blocking layer with different thicknesses was simulated to select the appropriate thickness and the metallization layer was tested with the method of high and low temperature shock. Results The range for the appropriate thickness of the blocking layer was 10 - 15 nm. Within this range, the site for the maximum concentration of implanted Ti was near the interface between the metallization lay- er and the quartz glass. Conclusion For the different ion implantation energy, the simulation could obtain the optimum thickness of blocking layer using SRIM program, and then improve the performance of the metallization layer.
分 类 号:TG174.444[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229