强跟踪平方根容积卡尔曼滤波和自回归模型融合的故障预测  被引量:6

Fault prediction with combination of strong tracking square-root cubature Kalman filter and autoregressive model

在线阅读下载全文

作  者:杜占龙[1] 李小民[1] 郑宗贵 毛琼[1] 

机构地区:[1]军械工程学院无人机工程系,河北石家庄050003 [2]第二炮兵研究院,北京100085

出  处:《控制理论与应用》2014年第8期1047-1052,共6页Control Theory & Applications

基  金:总装院校科技创新工程项目

摘  要:为了解决非线性系统中不可测量参数的预测问题,提出一种带有次优渐消因子的强跟踪平方根容积卡尔曼滤波(STSCKF)和自回归(AR)模型相结合的故障预测方法.利用AR模型时间序列预测法预测未来时刻的测量值,将预测的测量值作为STSCKF的测量变量,从而将预测问题转化为滤波估计问题.STSCKF通过在预测误差方差阵的均方根中引入渐消因子调节滤波过程中的增益矩阵,克服了故障参数变化函数未知情况下普通SCKF跟踪故障参数缓慢甚至失效的局限性,使得STSCKF能较好地预测故障参数的发展趋势.连续搅拌反应釜(CSTR)仿真结果表明,STSCKF的预测精度高于普通SCKF和强跟踪无迹卡尔曼滤波(STUKF),验证了方法的有效性.To deal with the problem of prognosis of unmeasured parameters in nonlinear systems,we propose a fault prediction algorithm which is a combination of the strong tracking square-root cubature Kalman filter (STSCKF) with suboptimal fading factor and the autoregressive (AR) model.Future time values of measurement variables are forecasted by using the AR model time series prediction method; and then,the predicted values are used as STSCKF measurement variables.Thus,the prognostic problem is transformed into a filter estimation issue.The fading factor is introduced into the square root of the STSCKF prediction error covariance for adjusting the gain matrix in the filter process.As aresult,STSCKF eliminates the disadvantage of slow tracking or even unable tracking of fault parameters in conventional SCKF when the time-varying functions of fault parameters are unknown,improving the capability for forecasting the varying trend of fault parameters.Simulation results on a continuous stirred tank reactor (CSTR) show that the predicting accuracy of STSCKF is higher than that of the conventional SCKF or the strong tracking unscented Kalman filter (STUKF),demonstrating the superiority of the performance capability of the proposed method.

关 键 词:强跟踪滤波 非线性滤波 状态和参数联合估计 平方根容积卡尔曼滤波(SCKF) 故障预测 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象