基于SVM的粗糙神经网络的执行器故障诊断方法  

在线阅读下载全文

作  者:谢安[1] 朱光衡[1] 

机构地区:[1]南京化工职业技术学院,江苏南京210048

出  处:《科技风》2014年第18期29-30,共2页

摘  要:由于化工过程对象很难全面获取各种故障数据和故障特征,因此按照化工机理建立过程模拟模型并对实际的故障进行模拟和诊断方法的研究是必要的。本文研究了支持向量机(SVM)的集成诊断方法,并进一步采用改进的粗糙神经网络的故障分类模型,通过分析故障在不同切面的分布诊断故障类型,改进故障诊断性能。针对动态执行器基准平台(DAMADICS)的19种阀门故障模式,与之前较成熟的独立元分析方法进行对比仿真验证,结果表明本文提出的故障诊断方法有效提高了故障诊断效率。

关 键 词:故障诊断 神经网络 SVM 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象