检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁夏大学数学计算机学院,宁夏银川750021
出 处:《江西师范大学学报(自然科学版)》2014年第4期413-418,共6页Journal of Jiangxi Normal University(Natural Science Edition)
基 金:国家自然科学基金(11061025;11361045);霍英东教育基金会高等院校青年教师基金(121105);宁夏高等学校科学技术研究(NGY2013019)资助项目
摘 要:针对1维非定常对流扩散方程,首先建立了1种2层有理型高阶紧致差分格式,其局部截断误差为O(h4+τ2).然后采用von Neumann分析方法证明了该格式是无条件稳定的.由于在每个时间层上只涉及到3个网格点,因此可直接采用追赶法求解此差分方程.最后通过3个数值算例验证了方法的精确性和可靠性.数值结果表明:所述格式不仅能够适用于非定常对流扩散问题,而且能够较好地求解非定常纯对流问题或纯扩散问题,并且其计算效果均优于Crank-Nicolson(C-N)格式和指数型高阶紧致(EHOC)差分格式.A two-level rational high-order compact difference scheme for solving the 1D unsteady convection-diffu-sion equation is proposed. The local truncation error of the scheme is O(h4 + τ2 ). It is proved that is unconditionally stable by von Neumann analysis method. Because only three points are used at each time level,this difference scheme can be solved by the method of forward elimination and backward substitution. Finally,numerical experi-ments for three test examples are carried out to demonstrate the accuracy and the effectiveness of the present meth-od. It is found that the present method is not only easy to be implemented to solve the 1D unsteady convection- dif-fusion problems,but also can be used to solve the unsteady pure convection problems or the pure diffusion prob-lems. And the computed results are better than Crank-Nicolson(C-N)scheme and the exponential high-order com-pact(EHOC)difference scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15