任意带状矩阵的求逆问题研究  被引量:2

The Inverse Problems Research of Arbitrary Banded Matrix

在线阅读下载全文

作  者:邓勇[1] 

机构地区:[1]喀什师范学院数学系,新疆喀什市844006

出  处:《山东农业大学学报(自然科学版)》2014年第4期620-625,共6页Journal of Shandong Agricultural University:Natural Science Edition

基  金:国家社科基金项目(11XTJ001)

摘  要:对称Toeplitz矩阵、Toeplitz矩阵以及三对角矩阵在数学的众多领域有着广泛应用,尤其是三对角或更一般的带状矩阵经常被应用于解偏微分方程的有限差分法和求解变系数线性递归方程等问题之中.所谓r-带状矩阵B_(r,n),(1≤r≤n)指的是当-r≤i≤r,1≤j≤r时元素为{a_j^i},而剩下的其他元素全为零的n×n阶矩阵且r称为其带宽.在已有文献中,关于r-带状矩阵的许多特殊情况(r=1,2,3)的求逆问题已经得到彻底解决.为将这些结果一般化,对Mallik方法进行了推广,并获得了r-带状矩阵B_(r,n)的LU分解和求逆(如果存在)公式.特别地,当r=n时,它成为计算可逆方阵逆矩阵的新途径.The inverses of r-banded matrices, for r=1,2,3 have been completely resolved as one can see from the references.Let Br,n,(1≤r≤n) be an n×n matrix of entries {aij},(-r≤i≤r,1≤j≤r),with the remaining un-indexed entries all zeros. In this paper,generalizing a method of Mallik, we give the LU factorization and the inverse of the matrix Br,n(if it exists).Our results arevalid for an arbitrary square matrix (taking r=n), and so, we will give a new approach for computing the inverse of aninvertible square matrix.

关 键 词:三角矩阵 HESSENBERG矩阵 逆矩阵 r-带状矩阵 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象