一种基于GHF的高斯粒子滤波算法  被引量:7

An Gaussian particle filter based on the Gaussian-Hermite filter

在线阅读下载全文

作  者:郑作虎[1] 王首勇[1] 

机构地区:[1]空军预警学院重点实验室,武汉430019

出  处:《控制与决策》2014年第9期1698-1702,共5页Control and Decision

基  金:国家自然科学基金项目(61179014;60872156)

摘  要:高斯粒子滤波算法重要性权值方差不会随迭代次数的增加而增加,能够较好地解决粒子退化问题,但其重要性密度函数没有考虑最新的量测信息,导致有效粒子数减少,算法滤波性能下降.针对该问题,提出一种基于Gaussian-Hermite滤波(GHF)的高斯粒子滤波算法,采用GHF构造高斯粒子滤波的重要性密度函数,考虑最新的量测信息,增加有效粒子数,提高算法的滤波精度.仿真结果表明,所提出算法的滤波精度明显优于高斯粒子滤波算法.Excluding the latest measuring information, the number of the effective particles reduces, so the performance of the Gaussian particle filter descends, which can conquer the particle degeneracy problem well for the variance of the important sampling weights not getting larger with time. Therefore, an improved Gaussian particle filter method based on the Gaussian-Hermite filter is proposed, and the importance density function is structured by using GHF. Including the latest measuring information, the number of effective particles are increased and filtering accuracy is improved significantly. The experimental results show that the proposed method is superior to the Gaussian particle filter.

关 键 词:高斯粒子滤波 重要性密度函数 Gaussian-Hermite滤波 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象