检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2014年第10期1369-1372,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(61203103);中央高校基本科研业务费专项资金资助项目(N110304006)
摘 要:由于湿法冶金萃取生产过程中组分的质量浓度在线检测极其困难,因此提出了一种结合独立成分分析与支持向量机的数据建模方法,建立了铜萃取过程组分的质量浓度预测模型.首先利用独立成分分析方法对现场数据进行预处理,然后利用支持向量机建立分配比模型对预测模型中的必要参数进行辨识,从而增强了铜萃取过程组分质量浓度预测模型的准确性.通过萃余液铜质量浓度和反萃余液铜质量浓度的实验证明了该模型更有效、更精确,为进一步控制管理提供了理论基础.Due to the mass concentration of component was hard to measure on-line in hydrometallurgy extraction process, so a data modeling method was proposed by combining independent component analysis with least squares support vector machine( ICA-LSSVM), which was used to establish the forecasting model of copper extraction. First, the independent component analysis was used to pretreat the field data. Then, the least squares support vector machine was used to established distribution ratio model which was used to identify the unknown parameter and enhance the accuracy of model. The simulation results showed that the models were practical and efficient, which could provide a theoretical basis for the control.
关 键 词:萃取 湿法冶金 混合模型 独立成分分析 最小二乘支持向量机
分 类 号:TG335.58[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90