基于最小二乘支持向量机的蜡沉积速率预测  被引量:11

Prediction of wax deposition rate based on least squares support vector machine

在线阅读下载全文

作  者:靳文博[1] 敬加强[1] 田震[1] 孙娜娜[1] 伍鸿飞 

机构地区:[1]西南石油大学油气消防四川省重点实验室,四川成都610500

出  处:《化工进展》2014年第10期2565-2569,共5页Chemical Industry and Engineering Progress

摘  要:考虑蜡沉积影响因素的复杂性和最小二乘支持向量机在小样本预测方面的优势,基于最小二乘支持向量机预测的原理,通过优化最小二乘支持向量机的参数,建立了蜡沉积速率的预测模型,并对蜡沉积速率进行了预测。结果表明:该方法在样本数量较小时仍具有较高的精度,蜡沉积速率的预测值和实验值的吻合程度较好;最小二乘支持向量机建模时可以得到直观的函数表达式,而神经网络方法却不能得到模型的显式表达式,因此该方法具有明显的优势;应用径向基核(RBF)作为核函数时,不同初值的正则化参数γ和核函数宽度σ对预测结果具有较大影响,使用时应合理选择。Considering the complexity of the influence factors of wax deposition and the advantage of least squares support vector machine in small sample prediction,based on the prediction principles of least squares support vector machine,by optimizing the parameters of least squares support vector machine,the prediction model of wax deposition rate was established and wax deposition rate was predicted. The method had higher accuracy when the samples were fewer,and the prediction results of wax deposition rate was in good agreement with the experimental data. The least squares support vector machine could get the intuitive function expression when it was used to establish the model of wax deposition rate,while neural network method could not get explicit expression. so this method has sufficient preponderance. When the RBF kernel function was used , different initial values of regularization parametersγand kernel bandwidthσhad a greater impact on the predicted results,so it should be used with care.

关 键 词:最小二乘支持向量机 蜡沉积速率 预测 模型 模型精度 

分 类 号:TE83[石油与天然气工程—油气储运工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象