基于支持向量机的高速公路事件检测算法研究  被引量:4

Algorithm for Freeway Incident Detection Based on SVM Classification

在线阅读下载全文

作  者:周洲[1] 周林英[1] 张立成[1] 郝茹茹[1] 

机构地区:[1]长安大学信息工程学院,西安710064

出  处:《西安工业大学学报》2014年第9期726-731,共6页Journal of Xi’an Technological University

基  金:中央高校基本科研业务费专项资金资助(0009-2014G1241046;0009-2014G1321034;0009-2014G1241044)

摘  要:高速公路事件检测是交通信息工程及控制学科中的一项重要研究课题,以高速公路交通流的特点为研究对象,提出了一种基于支持向量机(SVM)的高速公路事件检测算法.根据支持向量机的基本原理,分别设计了基于线性不可分SVM、齐次多项式核函数、高斯径向基核函数、双曲线正切核函数等不同核函数的事件检测算法.仿真结果表明:针对不同的交通流状况,选择合适的SVM模型和核函数,得到的检测结果与经典的加利福尼亚算法相比,检测效率高,性能指标好,具有较高的实际应用价值.Freeway Incident Detection (FID) has been studied as an important research subject in Traffic Information Engineering and Control . This paper , based on the freeway traffic flow characteristics ,presents new algorithms for FID with the support vector machine (SVM ) .According to the principal of SVM ,four different simulation experiments are carried out based on the linearly non-separable SVM ,the homogeneous polynomial kernel function ,the radial basis kernel function and the sigmoid kernel function respectively .The testing results obtained by the new algorithms were compared with those by the California algorithm .The simulation results show that choosing the right SVM model and kernel function according to different traffic flow characteristics can achieve better performance than the California algorithm does .The new algorithms prove of greater practical value .

关 键 词:高速公路 事件检测 支持向量机 参数优化 核函数 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP274[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象