基于演化算法的水果图像分割  被引量:17

Fruit image segmentation based on evolutionary algorithm

在线阅读下载全文

作  者:彭红星[1,2] 邹湘军[1] 陈琰[2] 杨磊[2] 熊俊涛[1] 陈燕[1] 

机构地区:[1]华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州510642 [2]华南农业大学信息学院,广州510642

出  处:《农业工程学报》2014年第18期294-301,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金(31171457);国家星火计划项目(2013GA780037);广东省产学研资助项目(2012B091000167);广东省科技计划项目(2013B020503059)

摘  要:为了满足水果采摘机器人对图像分割算法实时性和自适应性的要求,在传统演化算法的基础上,提出了一种基于蜂王交配结合精英选择、截断选择分阶段的改进演化算法对水果图像进行分割。在设计选择策略时,将迭代过程划分为前中后3个阶段,分别采用蜂王交配算法、精英选择策略和截断选择策略来进行适应值的选择,这样既保证了种群的多样性,又克服了传统演化算法局部最优、收敛过快的缺点。试验结果表明,该文提出的水果图像演化分割算法无论从稳定性、分割效果,还是全局最优收敛速度上,都明显优于传统演化算法,分割的阈值稳定在3个像素之内;与Otsu算法、贝叶斯分类算法、K均值聚类算法、模糊C均值算法等其他算法相比,水果图像演化分割算法分割效果最好,对同一幅图像进行分割得到的分割识别面积参考值最大,而且运行速度最快,平均运行时间为0.08735 s,远少于其余4种算法;并能用于柑橘、荔枝、苹果等各种水果的图像分割,具有一定的通用性,达到水果采摘机器人视觉实时识别的要求,为水果图像分割及其实时获取提供了一种新的基础算法。An improved evolutionary algorithm based on queen mating combined with elite and truncated choices by stages was proposed for fruit image segmentation, which was appropriate for the demand of the picking robot for real-time image and adaptive processing algorithms. The 8 bit binary code was used to correspond with the gray value of the fruit image in the improved evolutionary algorithm. The number of the initial population was set to 12 in the phase of the population initialized and the corresponding individual values, which ranged between 0 and 255, were generated by the random function. The twelve random numbers were the initial values of the evolutionary algorithm. Then an improved Otsu algorithm formula was selected as the fitness function. In the selection phase, the iterative process was divided into before stage, middle stage, and after stage, which were respectively used by queen mating algorithm, elitist choices strategy, and truncated choices strategy to select the fitness value. In the first stage, the individuals were produced by a random function and then the best individual (queen) of the evolutionary algorithm was hybridized with the rest of the individuals (including the randomly generated individuals) to generate new individuals. Finally, the individuals with the smallest fitness values were replaced by the new individuals. In the second stage, the elitist choices strategy was used and the individual with the smallest fitness value in the current generation was replaced by the individual with the highest fitness value in the previous generation. In the third stage, the truncated choices strategy was used and the last half of the individuals with the smallest fitness value in the current generation was replaced by the same number of individuals with the highest fitness value in the previous generation. This not only ensures the diversity of the population, but also overcomes the disadvantage of local optimized and too fast a convergence of the traditional evolutionary algorithm. In the cro

关 键 词:水果 图像处理 识别 演化算法 蜂王交配 截断选择 图像分割 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象