一种基于移动用户位置的网络服务推荐方法  被引量:31

Approach to Network Services Recommendation Based on Mobile Users' Location

在线阅读下载全文

作  者:刘树栋[1,2] 孟祥武[1,2] 

机构地区:[1]智能通信软件与多媒体北京重点实验室(北京邮电大学),北京100876 [2]北京邮电大学计算机学院,北京100876

出  处:《软件学报》2014年第11期2556-2574,共19页Journal of Software

基  金:国家自然科学基金(60872051);北京市教育委员会共建项目

摘  要:伴随着无线通信技术和智能移动终端的快速发展,基于位置的服务(location-based services,简称LBS)以其移动性、实用性、随时性和个性化的特点,在军事、交通、物流等诸多领域得到了广泛的应用,成为最具发展潜力的移动增值业务之一.在一个基于位置的网络服务推荐框架的基础上,给出了一种基于位置的移动用户偏好相似度计算方法,同时证明了其满足近邻相似测度的一般性质;然后,提出一种符合社会学概念的信任值计算方法.把它们应用于基于移动用户位置的网络服务推荐过程中,从而形成了一种基于移动用户位置的网络服务推荐方法.该方法有效地提高了网络服务推荐的准确性和可靠性,同时缓解了推荐过程中可能存在的数据稀疏性以及冷启动问题.最后,通过公开的MIT数据集验证了该推荐方法的准确度和可行性.Along with the development of wireless communication technologies and smart mobile devices, location-based services (LBS), with its characteristics of mobility, practicality, momentary and personalization, has been widely applied in military, transportation, logistics ere, and it has become one of the most potential mobile value-added services. Based on a proposed framework of location-based network services recommendation, this paper first provides an approach to compute mobile users' preferences similarity from their geographic location, and proves that it satisfies the general properties of neighbor similarity measure. Then according with the concept of trust in sociology, a new method is presented for calculating trust value. By importing them into network services recommendation process, an approach of location-based network services recommendation is proposed, which effectively improves its accuracy and reliability, and mitigates data sparsity of users' similarity matrix and cold start users problem in recommendation process. Finally the proposed algorithm is proved to be more accurate and feasible in experiments by using the public dataset MIT.

关 键 词:位置服务 个性化服务 相似度 推荐系统 协同过滤 信任关系 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象