检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南通航运职业技术学院管理信息系,江苏南通226010 [2]南通大学电气工程学院,江苏南通226019
出 处:《计算机测量与控制》2014年第11期3840-3842,共3页Computer Measurement &Control
基 金:国家自然科学基金(61104028;61374136);江苏省交通科学研究计划项目(2012Y24-2);南通航运职业技术学院科技计划项目(HYKJ/2011A01)
摘 要:研究了多传感器采样系统在发生一类典型故障情况下的分布式融合估计问题;首先,针对局部传感器,利用Kalman滤波获得的新息进行故障检测;然后在最小方差意义下发展了传感器故障在线递归估计方案;进一步将所获得的估计结果对故障传感器的测量值进行重构,并应用射影定理建立了局部传感器容错更新算法;最后基于线性最小方差融合原则给出了多传感器采样系统的分布式容错估计方案;相比于已有融合估计方法,所提方案不仅能及时检测传感器故障,并且能进一步充分利用故障传感器信息来提高估计精度;数值仿真验证了方法的有效性和优越性。We deal with the problem of distributed fusion estimation for multi-sensor sampled systems where a kind of typical faults may occur.Firstly,the innovation obtained from Kalman filter is used for fault detection of local sensor.Then an online recursive sensor fault estimation scheme is developed in the sense of minimum variance.Furthermore,using the estimation result to reconstruct the measurement of the faulty sensor,a fault tolerant update algorithm is built with help of projection theory.Based on the linear minimum variance criterion,a distributed fault tolerant estimation scheme is finally developed for multi-sensor sampled systems.Comparing with the existing method,the proposed scheme can not only detect faults in time,but also make full use of information of the faulty sensor to improve the overall estimation accuracy.Simulation results demonstrate the effectiveness and superiority.
关 键 词:容错估计 分布式融合 故障诊断 多传感器数据融合
分 类 号:TN912[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222