检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2014年第21期218-223,共6页Computer Engineering and Applications
摘 要:对高斯噪声下的高斯随机观测矩阵压缩感知问题建立了新的统计模型,并在该统计模型的基础上,引入相应的统计检验方法对l0范式约束下的硬阈值加权中值回归重建算法进行分析。提出了基于卡方检验的l1范式支持检测计算顺序排序方法来改进该算法的坐标下降的计算顺序;针对该算法需要通过人工设定最大迭代次数和残差能量下界来控制迭代次数的问题,提出了基于F检验的自适应停止准则,并在仿真实验中证明了改进后算法的有效性。In this paper, a novel statistical model is proposed to describe the Gaussian noisy compressed sensing problem with Gaussian random measurement matrix, and under the statistical framework, some hypothesis tests are used to analyse the performance of the weighted median regression estimate compressive sensing signal reconstruction with an iterative hard threshold under the l0- regularized constraint. The χ2 test based computation sequence is proposed to improve the performance of its coordination descent computation sequence, and F test based data adaptive stopping criterion is presented to take the place of its manual stopping conditions of the maximal number of iterations and the lower bound of the residual energy. Practical performance of the proposal is evaluated via numerical experiments.
关 键 词:压缩感知 高斯噪声 l0范式最小绝对偏差 加权中值 假设检验
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229