检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔学军[1,2] 赵俊莉[3,4,2] 鲁健庆 谢文魁[3]
机构地区:[1]西安建筑科技大学理学院,西安710055 [2]虚拟现实应用教育部工程研究中心,北京100875 [3]北京师范大学信息科学与技术学院,北京100875 [4]青岛大学软件技术学院,山东青岛266061
出 处:《计算机应用》2014年第12期3589-3592,3598,共5页journal of Computer Applications
基 金:国家自然科学基金重点资助项目(60736008);中央高校基本科研业务费专项基金资助项目(2013YB70)
摘 要:针对颅面配准问题,提出通过对颅面进行参数化将其转换成二维参数域的对应问题。首先,根据人类的生理特征标定6个特征点,利用这些特征点将颅面转换到一个统一的坐标系以实现姿态和大小的统一;其次,以两个外眼角为约束对参考颅面进行最小二乘保角映射,计算出6个特征点的参数值;然后,以这六个生理特征点的参数值为约束,利用最小二乘保角映射将任一待配准模型映射到二维参数域;最后,根据二维参数域确定三维颅面上的对应点,从而实现三维数据配准。为了验证所提方法,以对应点为控制点,利用薄板样条(TPS)变换把参考颅面变形到目标颅面,以变形后两个模型上对应点之间的几何距离的平均为度量,将所提算法和基于主轴分析的迭代最近点(ICP)配准以及基于随机采样控制点的迭代TPS配准方法进行了比较,实验结果表明,所提算法的配准效果优于其他两种方法。This paper transfered the problem of the 3D craniofacial registration into the one in 2D parameter domain by using surface parameterization. Firstly, six landmarks on the craniofacial surfaces were calibrated according to the physiological characteristics, and the pose and size of the craniofaeial surfaces were normalized by projecting the craniofac, ial surfaces into a unified coordinate system which was determined by using the six landmarks. Secondly, Least Squares Conformal Mapping (LSCM) was performed for a reference craniofaeial surface by pinning two outer comers of the eyes, by which the 2D parameters of the six landnmrks were computed. Thirdly, any craniofacial surface could be mapped into a 2D domain using LSCM by pinning the six landmarks. Finally, the 3D point correspondences were obtained by mapping the 2D correspondences into the 3D surfaces. To validate the proposed method, the reference model was deformed into the target one by the Thin Plate Spline (TPS) transform with the corresponding vertices being control points, and the average distance between two corresponding point sets after deformation was computed. By the average distance, the proposed method was compared with the principal axes analysis based ICP ( Iterative Closest Point) and the random sampling control points based iterative TPS registration methods. The comparison shows that the proposed approach is more accurate and effective.
关 键 词:非刚性配准 颅面 最小二乘保角映射 参数化 迭代最近点
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.98