李群法在水波方程中的应用  被引量:1

APPLICATIONS OF LIE GROUPS TO WAVE EQUATIONS

在线阅读下载全文

作  者:曹雪玲[1,2,3] 游亚戈[1,2] 姜家强 张亚群[1,2,3] 刘洋[1,2,3] 

机构地区:[1]中国科学院广州能源研究所,广州510640 [2]中国科学院可再生能源与天然气水合物重点实验室,广州510640 [3]中国科学院大学,北京100049

出  处:《太阳能学报》2014年第11期2334-2340,共7页Acta Energiae Solaris Sinica

基  金:海洋可再生能源专项资金项目(GHME2010GC01;GHME2011BL06)

摘  要:引入李群法对二维水波控制方程Laplace方程作群变换,利用同一解曲面的几何条件对其李代数进行降维,并借助于Mathematica计算软件,得到该控制方程的无限李群解,在考虑某边值问题的情况下,得出此问题的解析解。用李群法完成Laplace方程通解和某一特定边界条件特解的推导计算,证明了该方法的可行性。Currently, there are some obstacles on the study of numerical methods of wave energy with nonlinear random waves. To solve this problem more accurately, this paper introduces a mathematical method, Lie Groups, as anexploration and a research. To the two-dimcnsinnal Laplace equation, it makes a Group transformation in surface of the Laplace equation. Using Side Condition to reduce the dimensions of the equation, and with the help of Mathematic software, it can obtain the infinite Lie Group solutions. After that, considering the boundary conditions, and doing further calculations, the analytic solutions can be obtained. This paper hase completed the derivations and the calculations, including the general solution of Laplace equation and the particular solution of a specified boundary condition, Using Lie Group. R have proved the feasibility of the method.

关 键 词:李群 李代数 边界条件 海洋能 LAPLACE方程 

分 类 号:O353.2[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象