检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学环境科学与工程学院,山西太原030024
出 处:《中北大学学报(自然科学版)》2014年第5期565-570,共6页Journal of North University of China(Natural Science Edition)
基 金:国家科技支撑计划项目(2012BAJ04B02)
摘 要:支持向量回归机(Support Vector Regression,SVR)在供热负荷预测中得到了一些研究,然而模型的拟合度和泛化能力依赖于其相关参数的选取,需要足够的先验信息,寻优过程存在难度.针对上述情况,提出采用交叉验证(Cross Validation,CV)的思想对其中的重要参数(惩罚因子C和RBF核函数参数γ)进行网格划分,在训练集中自动寻找最佳参数,从而得到最佳的训练模型,并用该模型对测试集进行回归预测.以某热源数据进行了实验研究,结果表明:该方法能够快速建立预测模型,有效地预测供热负荷,具有较高的拟合度和较强的泛化能力.Support Vector Regression(SVR) has achieved some results in the research of heating load forecast- ing. However, the fitting degree accuracy and generalization performance of the SVR models depend on the selection of its parameters, optimization process is difficult to find, with adequate prior information. In view of this situation, the thought of Cross Validation(CV) was put forward to carry on the grid division for sever- al important parameters(the penalty factor C and RBF kernel function parameter y), which could search the best parameter in the training set automatically, so as to obtain the optimal model of regression prediction for the test set. In the experimental study of a heat source data, the results illustrate that this method can quickly establish prediction model, and effectively predict the heating load, with a high fitting degree and strong gen- eralization ability.
分 类 号:TU995[建筑科学—供热、供燃气、通风及空调工程] TP274[建筑科学—市政工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15