检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南工业大学计算机与通信学院,湖南株洲412007
出 处:《湖南工业大学学报》2014年第5期79-83,共5页Journal of Hunan University of Technology
基 金:国家自然科学基金资助项目(61170102);湖南省教育厅重点基金资助项目(12A042)
摘 要:针对传统的模糊C-均值算法在图像分割中存在的缺陷,提出了一种基于点密度函数加权的模糊C-均值聚类算法。将图像像素的点密度函数作为权值,并依据类间相关度定义了一个聚类有效性函数用以确定最佳聚类数,结合聚类有效性完成对图像的分割。理论分析和对比试验表明,该算法在一定程度上克服了模糊均值算法的缺陷,在图像分割中具有良好的分类精度。For the defects of traditional fuzzy C-means algorithm in image segmentation, a weighted fuzzy C-means clustering algorithm based on dot density function are proposed. Takes the dot density function of image pixels as the weight, and on the basis of inter-class correlation defines a cluster validity function to determine the optimal number of clusters and combines with cluster validity to complete the effective image segmentation. Theoretical analysis and com- parative experiments show that the algorithm overcomes the shortcomings of fuzzy means algorithm to some extent and has good classification accuracy in image segmentation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46