检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹安东[1] 赵韩[1] 周斌[1] 江昊[1] 路瑞刚[2]
机构地区:[1]合肥工业大学机械与汽车工程学院,合肥230009 [2]中国汽车工程学会,北京100055
出 处:《汽车工程》2014年第11期1310-1315,共6页Automotive Engineering
基 金:国家"863"节能与新能源汽车重大专项(2012AA111401);安徽省自然科学基金(1208085ME78)资助
摘 要:本文中采用主成分分析和模糊聚类相结合的行驶工况识别方法进行纯电动汽车续驶里程的估算。首先选取20个具有代表性的循环工况数据,将其划分为215个工况片段,并选用12个特征参数对其进行主成分分析、模糊C聚类分析和行驶工况识别;然后在MATLAB/Simulink下建立纯电动汽车整车模型,进行行驶工况识别、整车能量消耗和续驶里程仿真估算;最后在转鼓试验台上进行ECE15工况下实车测试验证,结果表明:续驶里程仿真估算值与测试值的最大绝对误差为1.905km,平均绝对误差为0.742km,相对误差小于3%。In this paper, a driving cycle identification method is adopted, which combines principal compo-nent analysis with fuzzy clustering, to estimate the driving range of battery electric vehicle. Firstly twenty represent-ative driving cycle data are selected and divided into 215 cycle segments, and 12 characteristic parameters are cho-sen to conduct principal component analysis, fuzzy C-means clustering and driving cycle identification. Then a mod-el for battery electric vehicle is established with MATLAB/Simulink to perform driving cycle identification and the simulation estimations of vehicle energy consumption and driving range. Finally a real vehicle validation test is car-ried out on drum test bench with ECE15 cycle. The results show that compared with test data, the maximum abso-lute error of simulated estimates is 1. 905km, and the corresponding average absolute error and relative error are 0. 742km and less than 3% respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28