检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2014年第12期1706-1709,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(61374097);河北省自然科学基金资助项目(F2011501021;F2014501082)
摘 要:针对低信噪比情况下主用户信号调制类型识别率低的问题,提出了一种使用信号循环谱中特征参数作为样本参数的基于随机森林的认知网络信号类型识别算法,通过使用训练完成的随机森林对主用户信号类型识别,有效抑制了采用ANN和SVM进行识别所造成的误差影响,提高了低信噪比下信号识别的精确度,实现了不同调制类型信号的有效检测与识别.实验结果表明:所提出的算法有较高的主用户信号调制类型识别精度,进而验证了算法的有效性.A novel approach to signal recognition based on random forests, which uses signal cyclic spectrum feature parameters as sample parameters, was introduced to solve the problem of the low accuracy of the primary user signal type identification in low signal-to-noise ratio (SNR). By utilizing the proposed algorithm, the detecting signal types were identified by the trained random forests. The errors using artificial neural network (ANN)and support vector machine (SVM) were restrained. The accuracy of signal type identification was improved in low SNR and effective signal detection and recognition was achieved to different modulated signal. Simulations showed the validity and superiority of the proposed algorithm.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117