一类基于比率的广义Holling-Tanner系统的定性分析  

Qualitative Analysis for a Ratio-dependent Generalized Holling-Tanner System

在线阅读下载全文

作  者:刘清[1] 李艳玲[2] 杨文彬[2] 

机构地区:[1]延安大学西安创新学院,西安710100 [2]陕西师范大学数学与信息科学学院,西安710062

出  处:《工程数学学报》2014年第6期879-888,共10页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(11271236);中央高校基本科研业务费专项资金(GK201302025;GK201303008;GK201401004)~~

摘  要:本文在齐次Neumann边界条件下研究了一类捕食-食饵模型正平衡解的稳定性与存在性.首先,我们利用算子谱理论得到了正常数平衡解的一致渐近稳定性,其次,运用最大值原理和Harnack不等式,我们给出了正平衡解的先验估计,再次,利用积分的性质并结合ε-Young不等式和Poincar′e不等式,文中证明了非常数正平衡解的不存在性,最后,利用Leray-Schauder度理论证明了非常数正平衡解的存在性,并且给出了正平衡解存在的充分条件.研究结果表明,当参数满足一定条件时,两物种可以共存.The stability and existence of positive steady-state solutions for a predator-prey model are studied under homogeneous Neumann boundary condition. Firstly, the global asy-mptotic stability of positive constant steady-state solution is obtained by means of spectrum theory. Secondly, the priori estimates of positive steady-state solutions are given by applying the maximum principle and the Harnack inequality. Thirdly, the non-existence of the non-constant positive steady-state solutions is proved through the integral property,ε-Young inequality and Poincar′e inequality. Lastly, the existence of non-constant positive steady-state solutions is investigated with the help of the priori estimates and Leray-Schauder degree theory. Moreover, the su?cient conditions for the existence of positive steady-state solutions are obtained. The results show that when the parameters satisfy certain conditions, two species will coexist.

关 键 词:广义Holling-Tanner系统 比率依赖 稳定性 存在性 

分 类 号:O175.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象