检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]延安大学西安创新学院,西安710100 [2]陕西师范大学数学与信息科学学院,西安710062
出 处:《工程数学学报》2014年第6期879-888,共10页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(11271236);中央高校基本科研业务费专项资金(GK201302025;GK201303008;GK201401004)~~
摘 要:本文在齐次Neumann边界条件下研究了一类捕食-食饵模型正平衡解的稳定性与存在性.首先,我们利用算子谱理论得到了正常数平衡解的一致渐近稳定性,其次,运用最大值原理和Harnack不等式,我们给出了正平衡解的先验估计,再次,利用积分的性质并结合ε-Young不等式和Poincar′e不等式,文中证明了非常数正平衡解的不存在性,最后,利用Leray-Schauder度理论证明了非常数正平衡解的存在性,并且给出了正平衡解存在的充分条件.研究结果表明,当参数满足一定条件时,两物种可以共存.The stability and existence of positive steady-state solutions for a predator-prey model are studied under homogeneous Neumann boundary condition. Firstly, the global asy-mptotic stability of positive constant steady-state solution is obtained by means of spectrum theory. Secondly, the priori estimates of positive steady-state solutions are given by applying the maximum principle and the Harnack inequality. Thirdly, the non-existence of the non-constant positive steady-state solutions is proved through the integral property,ε-Young inequality and Poincar′e inequality. Lastly, the existence of non-constant positive steady-state solutions is investigated with the help of the priori estimates and Leray-Schauder degree theory. Moreover, the su?cient conditions for the existence of positive steady-state solutions are obtained. The results show that when the parameters satisfy certain conditions, two species will coexist.
关 键 词:广义Holling-Tanner系统 比率依赖 稳定性 存在性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40