检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221008
出 处:《工矿自动化》2015年第1期62-66,共5页Journal Of Mine Automation
基 金:高等学校博士学科点专项科研基金资助项目(20110095110011);江苏省自然科学基金资助项目(BK20130207)
摘 要:针对煤炭原始近红外光谱数据中存在噪声的问题,提出了基于De-SNV与小波阈值去噪组合的煤炭近红外光谱数据预处理方法。采用缺省软阈值法进一步对经过Savitzky-Golay平滑和De-SNV处理的光谱数据去噪,并分别建立了水分、灰分和挥发分的PLS校正模型,通过分析模型的预测性能对该方法的有效性进行评估。实验结果表明,经过该方法预处理的光谱数据所对应的PLS校正模型性能明显优于使用原始光谱数据所建立的PLS校正模型,水分、灰分和挥发分的PLS校正模型的预测均方根误差分别降低至0.007 07,0.040 8,0.008 66,决定系数分别提高至0.858 7,0.743 8,0.778 5。For noise existed in original near infrared spectral data of coal, a data preprocessing method for near infrared spectrum of coal was proposed based on De-SNV and wavelet threshold denoising. Spectrum data processed by Savitzky-Golay smoothing and De-SNV was further processed by default soft threshold denoising method. Then PLS calibration models of moisture, ash and volatile were established. Effect of the method was evaluated by analyzing predicting performance of the models. The experiments show that performance of PLS model based on spectrum data processed by the method is much better than the one based on original spectrum data. The root-mean-square errors of prediction of the three PLS ealibration models are decreased to 0. 007 07, O. 040 8, 0. 008 66 respectively, and the determination coe{{icients are increased to 0.858 7, 0.743 8, 0.778 5.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.121