检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机科学技术学院,上海201203
出 处:《计算机应用与软件》2015年第1期175-178,共4页Computer Applications and Software
基 金:国家自然科学基金项目(60875003);国家高技术研究发展计划项目(2011AA100701)
摘 要:人脸识别一般都要先对人脸特征做维数约简,再做识别。有些传统的维数约简算法对训练样本的数量有一定的要求,比如对分类比较有效的LDA算法。而现实应用中,数据库往往只能为每个人脸对象提供数量非常有限的图片,甚至是单样本。提出一种基于均匀LBP(Local Binary Pattern)算子和稀疏编码的人脸识别方法,使用少量关键特征代替维数约简过程,解决训练样本稀少的问题。在Stirling人脸库上进行测试,获得较高的识别率和鲁棒性,证实了算法的有效性。Face recognition generally requires facial feature dimensionality reduction before recognition. However, for some traditional dimensionality reduction algorithms, they have certain requirements on the number of training samples, such as LDA (linear discriminant analysis), though it is quite effective in categorisation, whereas in real-world applications, often the databases can only provide very limited number of pictures for each human face, or even a single training sample. This paper presents a face recognition method, it is based on the uniform LBP operator and sparse coding, and uses few key features to replace the dimensionality reduction process, thus overcomes the problem of limited number of training samples. The method is tested on Stirling face database and achieves higher recognition rate and robustness, this confirms the effectiveness of the algorithm.
关 键 词:LBP算子 稀疏编码 人脸识别 单训练样本 鲁棒性
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117