最小相关性最大依赖度属性约简  被引量:11

Attribute Reduction with Principle of Minimum Correlation and Maximum Dependency

在线阅读下载全文

作  者:翟俊海[1] 万丽艳[1] 王熙照[1] 

机构地区:[1]河北大学数学与计算机学院河北省机器学习与计算智能重点实验室,保定071002

出  处:《计算机科学》2014年第12期148-150,154,共4页Computer Science

基  金:国家自然科学基金项目(71371063,61170040);河北省自然科学基金项目(F2013201220,F2013201110);河北省高等学校科学技术研究重点项目(ZD20131028)资助

摘  要:在经典粗糙集中,基于重要度的决策表属性约简算法只考虑了决策属性与条件属性之间的依赖度,没有考虑约简中条件属性之间的相关性,由此求出的约简中可能依然包含冗余属性。针对这一问题,提出了一种改进算法,它利用最小相关性和最大依赖度准则求决策表属性约简。与基于重要度的决策表属性约简算法相比,本算法求出的约简包含的属性个数少、冗余小。实验结果显示,本算法优于基于重要度的决策表属性约简算法。In the classical rough set,the reduction algorithm based on significance for decision table only considers the dependency of decision attribute and condition attribute,and does not consider the correlation between the condition attributes in reduct.The reduct calculated with this kind of algorithm may include redundant attributes.In order to deal with this problem,an improved algorithm was proposed in this paper,which calculates the reduct with the principle of minimum correlation and maximum dependency.Compared with the reduction algorithm based on significance for decision table,less attributes are remained in the reducts calculated with the proposed algorithm,and the redundancy of the reduct is smaller.The experimental results show that the proposed algorithm outperforms the reduction algorithm based on significance for decision table.

关 键 词:粗糙集 决策表 属性约简 最小相关性 最大依赖度 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象