基于肿瘤标志群的人工神经网络模型对肺癌辅助诊断的价值  被引量:3

Value of artificial neural network combined with optimal biomarkers in diagnosis of lung cancer

在线阅读下载全文

作  者:李尊税 魏小玲[2] 何其栋[1] 张红巧[3] 吴拥军[1] 

机构地区:[1]郑州大学公共卫生学院卫生毒理学教研室,郑州450001 [2]济南市儿童医院感染科,济南250022 [3]郑州大学第五附属医院肿瘤科,郑州450052

出  处:《郑州大学学报(医学版)》2014年第5期658-661,共4页Journal of Zhengzhou University(Medical Sciences)

基  金:国家自然科学基金资助项目30972457;81001239;河南省重大科技攻关项目112102310102;河南省医学科技攻关计划项目2011020082

摘  要:目的:应用人工神经网络(ANN)技术联合肿瘤标志蛋白芯片建立人工智能辅助诊断模型,探讨其对肺癌诊断的价值。方法:采用蛋白芯片(化学发光法)测定201例肺良性疾病患者、202例肺癌患者血清中9项血清肿瘤标志(CA199、Ferritin、AFP、CA153、CEA、NSE、CA242、CA125、HGH)的水平,logistic回归筛选,建立ANN和Fisher判别分析肺癌诊断模型。结果:4项肿瘤标志(CEA、NSE、Ferritin、CA153)建立的ANN模型的ROC曲线下面积(0.850)高于4项Fisher、6项(CEA、NSE、Ferritin、CA153、AFP、CA125)Fisher和6项ANN的ROC曲线下面积(0.793、0.767和0.825)。结论:基于4种肿瘤标志的ANN模型判别诊断肺癌的效果优于Fisher判别分析,优于6种肿瘤标志建立的ANN模型;ANN模型诊断效果优于Fisher判别分析。Aim:To establish the model by artificial neural network ( ANN ) technology combined with tumor marker protein chip for the diagnosis of lung cancer ,and to explore the diagnosis value of artificial intelligence model .Methods:Protein chips based on chemiluminescence were used to measure the levels of nine serum tumor markers (CA199,Ferritin, AFP,CA153,CEA,NSE,CA242,CA125,HGH) in 201 cases of benign lung diseases and 203 cases of lung cancer.Multi-variate logistic regression was employed to optimize the tumor marker group .ANN and Fisher discriminant analysis was used to develop the two diagnostic model of lung cancer .Results:Based on the optimal four tumor markers ( CEA,NSE,Ferritin, CA153),area under the ROC curve of ANN model (0.850) was higher than those of the Fisher discriminant analysis based on the optimal four and six tumor markers (CEA,NSE,Ferritin,CA153,AFP,CA125) as well as ANN model based on the optimal six tumor markers(0.793,0.767 and 0.825).Conclusion:Based on the four kinds of tumor markers in the diagno-sis of lung cancer ,ANN model is better than Fisher discriminant analysis .ANN model established by six tumor markers is superior to Fisher discriminant analysis .

关 键 词:肺癌 肿瘤标志 人工神经网络 FISHER判别分析 辅助诊断 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象