基于GPU的多类支持向量机改进算法  被引量:2

Improvement of Multiclass Support Vector Machines Based on Graphic Processor

在线阅读下载全文

作  者:顾德闯 杨永健[1] 

机构地区:[1]吉林大学计算机科学与技术学院,长春130012

出  处:《吉林大学学报(理学版)》2015年第1期107-111,共5页Journal of Jilin University:Science Edition

基  金:教育部博士学科点专项基金(批准号:20120061110044)

摘  要:针对支持向量机算法耗时较长的问题,利用并行计算思想,基于图形处理器对多类支持向量机算法——Crammer-Singer算法进行改进,并利用循环展开、数据暂留、缓存和开放运算语言等技术对算法加以实现.分别在4个数据集上对原算法和改进算法进行对比实验,结果表明,改进算法在性能上获得了较大提升.According to the phenomenon that the support vector machine algorithm takes too much time,the idea of using parallel computation was used to solve this problem.Based on this,an improvement of the classic multiclass support vector machine algorithm first proposed by Crammer and Singer was made,and it was realized by using the great parallel ability of graphic processor.Technology of loop unrolling,data staying,cache and open computing language were used for implementing the improved algorithm.The original algorithm and the improved algorithm were executed on the same four datasets.And the experimental results show that the improved algorithm is much better than the original algorithm in performance of time.

关 键 词:支持向量机 多分类 图形处理器 并行计算 开放运算语言 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象