检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东海洋大学信息学院,湛江524088 [2]广东海洋大学航海学院,湛江524088
出 处:《系统仿真学报》2014年第5期1176-1179,共4页Journal of System Simulation
基 金:国家自然科学基金资助项目(61272534)
摘 要:为了得到精确的泛化性较高的缓变非线性对象的可离线在线模型,提出了频分时滞回归径向基神经网络(FTRR)算法。此算法基于频谱分析,先把信号分解出数个频带,再构建神经网络模型。该模型用于改进的单步模型预测控制中离线求得控制输出,由此,再依据有约束线性最小二乘优化算法对PID参数进行离线整定,使其PID输出与单步模型预测控制输出相似。仿真结果表明,FTRR模型精度高且泛化性好,PID整定后的系统调节品质较高,适用于缓变控制系统。In order to get the very generalized accurate on_off_line model of slow changing non_line object, an algorithm of frequency_divide time_delay regress RBF(FTRR) neural network was discussed. With the different frequency bands of signal by power-density spectrum analysis, a neural network model was built. The FTRR model was used in improved model predictive control, and an off_line control output was got. From this output, the PID parameter was tuned with linear least-squares in off_line status, to ensure that the two control output was very similar. Simulation shows that FTRR model is accurate and generalized, and system adjusting quality is increased after PID tuning. The model can be used in slow changing control system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222