单形中Weitzenbck不等式和Sallee-Alexander不等式的稳定性  

The stability of Weitzenbck inequality and Sallee-Alexander inequality for a simplex

在线阅读下载全文

作  者:王文[1] 杨世国[1] 

机构地区:[1]合肥师范学院数学与统计学院,安徽合肥230061

出  处:《浙江大学学报(理学版)》2015年第1期82-86,共5页Journal of Zhejiang University(Science Edition)

基  金:高等学校博士点专项科研基金项目(20113401110009);安徽省高校省级重点项目(KJ2013A220)

摘  要:对于n(n≥2)维Euclidean空间中n维单形的几何不等式,其径向函数或支撑函数很难找到,一般很难用径向或Hausdorff来度量2个单形的"偏差",使得对有关单形的几何不等式稳定性的研究比较困难.利用n维单形与其共超球的n维正则单形的偏差,引进了单形"R-偏正"度量的概念,证明了Gerber不等式、Euler不等式、SalleeAlexander不等式以及Weitzenbck不等式是稳定的,并给出这些几何不等式的稳定性版本.It is very difficult to find the formula of radial function or support function of the simplex in n-dimensional Euclidean space En (n≥2). Therefore, the deviation metric of the two simplices is difficult to be realized by radial metric or Hausdorff metric. The research on stability of geometric inequalities of simplices is also difficult. In this paper,by using the deviation of an n-simplex and a regular n-simplex which are on an (n-1)-dimensional hyper sphere, the r-deviation regular metric are introduced. Futher, by applying the R-deviation regular metric, we proved that Gerber inequality, Euler inequality, Sallee-Alexander inequality and Weitzenbock inequality with an n-simplex are all stable, and gave the stability versions to these geometric inequalities for a simplex.

关 键 词:单形 外接球半径 Weitzenbock不等式 Sallee-Alexander不等式 宽度 稳定性 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象