检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛理工大学计算机工程学院,青岛266071
出 处:《清华大学学报(自然科学版)》2014年第7期929-934,共6页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金资助项目(61173181)
摘 要:在图像的检索方法中,大多数均根据图像的变换域的特征进行检索,其缺点是没有抓住图像的现实属性,从而检索效率低下,检索精度较低。针对此问题,该文根据内容(形状、颜色、纹理等)的视觉特性的不同,结合局部和全局特征,提出一种基于聚类形状的图像检索方法。首先将对象形状包含图像通过Fourier变换的方法进行描述,其次应用双向经验模式分解检测图像边缘,最后应用模糊聚类检索方式进行图像语义类别检索。其中所采用的模糊聚类算法采用机构监督机制,从而使形状识别类别用一组标记形状代表。根据导出的形状原型检索类似形状。相比于现有的检索方法,对比结果显示该方法在检索精度方面有了显著的改善。Most image retrieval methods are conducted based on the features of the image transform domain of retrieval,with the image of real property not seized with low retrieval efficiencies and low retrieval precisions.Aiming at this problem,this paper presents an image retrieval method based on the clustering shape according to different visual features of the content(shape,color,and texture),combining the local and global features.Object shapes including images were described using the Fourier transform method,with two-way empirical mode decomposition then used to detect image edges and fuzzy clustering retrieval used to complete image semantic category retrieval.Institution supervision mechanism was applied to the fuzzy clustering algorithm so that the shape identification category was represented by a set of tags on behalf of the shape,with the shape of the export prototype retrieving the similar shape.Compared with the conventional retrieval methods,the results show that the developed method significantly improves the retrieval accuracy.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145