基于人工蜂群算法的KPCA特征优化提取  

KPCA Feature Optimal Extraction Based on Artificial Bee Colony Algorithm

在线阅读下载全文

作  者:李强[1,2] 杨大炼[2] 黄文庆[2] 江凯[2] 

机构地区:[1]湖南工业职业技术学院机械工程系,长沙410208 [2]中南大学机电工程学院,长沙410083

出  处:《机械设计与研究》2015年第1期65-69,共5页Machine Design And Research

基  金:湖南省科技计划资助项目(2012GK3094);湖南省教育厅科学研究项目优秀青年专项(14B052)

摘  要:采用KPCA进行特征提取时,其核函数参数对轴承故障特征的可分性影响很大,直接影响轴承故障诊断的准确率,而使最优的核参数难以选取。针对这一问题,采用人工蜂群算法与KPCA相结合,提出了基于人工蜂群算法的KPCA核参数优化选取方法,并实现了滚动轴承故障特征的优化提取。试验结果表明,该方法能够最大程度提高故障样本的可分性和SVM模型的分类精度;同时通过对比分析遗传算法、粒子群算法及人工蜂群算法的优化结果,验证了该方法具有更好的寻优能力。When using KPCA to extract feature, the kernel function parameters have a great influence on the separability of bearing fault feature, and affect the accuracy of the bearing fault diagnosis, thus the optimal parameters of kernel are difficult to be selected. Aimed at this problem, the artificial bee colony algorithm and KPCA were combined, then the method of KPCA kernel parameter optimization based on artificial bee colony algorithm was proposed, and it was applied in achieving the optimal extraction of rolling bearings ~ fault feature. The experimental results show that this method can improve the separability of fault features and the classification accuracy of SVM model in a considerable degree. By comparing and analysis the results of artificial colony algorithm optimization, genetic algorithm and particle swarm optimization algorithm, the conclusions verified that the proposed method in this paper has better optimization ability.

关 键 词:人工蜂群算法 核主元分析(KPCA) 特征提取 故障诊断 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象