检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董文江[1,2,3] 王凯丽[1,2,3] 谷风林[1,2,3] 陆敏泉[1,2,3] 赵建平[1,2,3]
机构地区:[1]中国热带农业科学院香料饮料研究所,海南万宁571533 [2]农业部香辛饮料作物遗传资源利用重点实验室,海南万宁571533 [3]国家重要热带作物工程技术研究中心,海南万宁571533
出 处:《热带作物学报》2015年第2期404-410,共7页Chinese Journal of Tropical Crops
基 金:国家自然科学基金项目(No.31440071);中国热带农业科学院院基本科研业务费项目(No.1630012014017)
摘 要:采用紫外可见光谱指纹图谱结合多元数据分析建立一种可快速鉴别不同焙炒度咖啡的方法,考察不同的光谱前处理方法对样品分类结果的影响,比较不同的模式识别方法对样品的鉴别结果。结果表明:一阶导数处理被选为最优的前处理方法,大部分样品能够在主成分分析(PCA)和系统聚类分析(HCA)中按各自特性聚为一类,线性判别分析(LDA)的分类效果优于PCA和HCA;最小二乘向量机(LS-SVM)模型的预报结果优于偏最小二乘判别分析(PLS-DA)和反传人工神经网络(BP-ANN),识别率和预报率均为100%。A rapid screening method was established to discriminate coffee of different roasting degree based on the Uhraviolet-Visible(UV-Vis) fingerprint in combination with multivariate data analysis. Different pre-processing methods were tested to evaluate the effect on sample classification, and different pattern recognition techniques were compared to choose the best one with regarding to the recognition rate and prediction rate. The results revealed that the first derivative was chosen the best pre-processing method and a well discrimination was achieved between the defined categories after performing PCA and HCA on the data matrix, the performance of LDA was better than that of PCA and HCA. LS-SVM model showed a clear improvement in the overall recognition rate(100%) and prediction rate(100%) compared with that of PLS-DA and BP-ANN.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.121