紫外可见光谱指纹图谱结合化学计量学在鉴别咖啡不同焙炒度中的应用  被引量:2

Discrimination of Coffee Samples of Different Roasting Degree by UV-Vis Spectroscopic Fingerprint with the Aid of Chemometrics

在线阅读下载全文

作  者:董文江[1,2,3] 王凯丽[1,2,3] 谷风林[1,2,3] 陆敏泉[1,2,3] 赵建平[1,2,3] 

机构地区:[1]中国热带农业科学院香料饮料研究所,海南万宁571533 [2]农业部香辛饮料作物遗传资源利用重点实验室,海南万宁571533 [3]国家重要热带作物工程技术研究中心,海南万宁571533

出  处:《热带作物学报》2015年第2期404-410,共7页Chinese Journal of Tropical Crops

基  金:国家自然科学基金项目(No.31440071);中国热带农业科学院院基本科研业务费项目(No.1630012014017)

摘  要:采用紫外可见光谱指纹图谱结合多元数据分析建立一种可快速鉴别不同焙炒度咖啡的方法,考察不同的光谱前处理方法对样品分类结果的影响,比较不同的模式识别方法对样品的鉴别结果。结果表明:一阶导数处理被选为最优的前处理方法,大部分样品能够在主成分分析(PCA)和系统聚类分析(HCA)中按各自特性聚为一类,线性判别分析(LDA)的分类效果优于PCA和HCA;最小二乘向量机(LS-SVM)模型的预报结果优于偏最小二乘判别分析(PLS-DA)和反传人工神经网络(BP-ANN),识别率和预报率均为100%。A rapid screening method was established to discriminate coffee of different roasting degree based on the Uhraviolet-Visible(UV-Vis) fingerprint in combination with multivariate data analysis. Different pre-processing methods were tested to evaluate the effect on sample classification, and different pattern recognition techniques were compared to choose the best one with regarding to the recognition rate and prediction rate. The results revealed that the first derivative was chosen the best pre-processing method and a well discrimination was achieved between the defined categories after performing PCA and HCA on the data matrix, the performance of LDA was better than that of PCA and HCA. LS-SVM model showed a clear improvement in the overall recognition rate(100%) and prediction rate(100%) compared with that of PLS-DA and BP-ANN.

关 键 词:紫外可见光谱 焙炒咖啡 指纹图谱 多元数据分析 

分 类 号:R284.1[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象