检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山东大学学报(工学版)》2015年第1期54-63,共10页Journal of Shandong University(Engineering Science)
基 金:国家自然科学基金资助项目(61004046;61104117)
摘 要:研究了一类不确定随机多时滞系统的鲁棒随机稳定性问题,其中系统不确定参数满足线性分式结构。首先,将倒数凸方法加以推广,得到一个新的积分不等式引理;然后,充分考虑时滞区间上下限关系,构造了多时滞区间相关的李雅普诺夫函数,并在新的积分不等式方法下,得到具有更小保守性和较少自由变量的时滞相关稳定性条件;最后,给出一些数值仿真实例,验证了所提方法的有效性。The problem of robust stochastic stability for a class of uncertain stochastic systems with multiple delays was investigated in this paper. The uncertainties were in linear fractional form. Firstly, a new integral inequlity lemma was derived by extending the reciprocally convex approach. Then, based on a multiple delay-interval dependent Lyapunov- Krasovskii constructed by fully considering the relationship between upper and lower time delay interval and the new in- tegral inequlity approach, some novel delay-dependent stability criteria with less conservatism and less free weighting matrices were obtained. At last, some numerical examples were given to show the effectiveness of the proposed results.
关 键 词:随机系统 鲁棒随机稳定 线性结构不确定性 多时滞 李雅普诺夫函数 LMI
分 类 号:O231.3[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117