检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何林知[1] 赵建民[1] 朱信忠[1] 吴建斌[1] 杨凡[1] 郑忠龙[1]
机构地区:[1]浙江师范大学数理与信息工程学院,浙江金华321004
出 处:《计算机应用》2015年第3期779-782,806,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(61272468;61170109);浙江省自然科学基金资助项目(LY14F030008;LY13F020015)
摘 要:针对人脸图像不完备的问题和人脸图像在不同视角、光照和噪声下所造成训练样本污损的问题,提出了一种快速的人脸识别算法——RPCA_CRC。首先,将人脸训练样本对应的矩阵D0分解为类间低秩矩阵D和稀疏误差矩阵E;其次,以低秩矩阵D为基础,得到测试样本的协同表征;最后,通过重构误差进行分类。相对于基于稀疏表征的分类(SRC)方法,所提算法运行速度平均提高25倍;且在训练样本数不完备的情况下,识别率平均提升30%。实验证明该算法快速有效,识别率高。Since the face images might be not over-complete and they might be also corrupted under different viewpoints or different lighting conditions with noise, an efficient and effective method for Face Recognition (FR) was proposed, namely Robust Principal Component Analysis with Collaborative Representation based Classification ( RPCA_CRC). Firstly, the face training dictionary DO was decomposed into two matrices as the low-rank matrix D and the sparse error matrix E ; Secondly, the test image could be collaboratively represented based on the low-rank matrix D ; Finally, the test image was classified by the reconstruction error. Compared with SRC ( Sparse Representation based Classification), the speed of RPCA_CRC on average is 25-times faster. Meanwhile, the recognition rate of RPCA_CRC increases by 30% with less training images. The experimental results show the proposed method is fast, effective and accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175