红外云图的台风内核风速建模的RBFNN和PDE方法  被引量:2

Typhoon inner core wind speed modeling method by RBFNN and PDE based on infrared cloud image

在线阅读下载全文

作  者:钱金芳[1] 张长江[1] 杨波[1] 马雷鸣 

机构地区:[1]浙江师范大学数理与信息工程学院,浙江金华321004 [2]上海市浦东新区气象局,上海200135

出  处:《红外与激光工程》2015年第2期438-444,共7页Infrared and Laser Engineering

基  金:国家973计划(2009CB421500);国家自然科学基金(40805048;11026226;41475059);浙江省自然科学基金(LY13D050001);浙江省科技厅公益性技术应用研究计划(2012C23027);浙江师范大学计算机科学与技术省级重中之重学科开放基金(ZC323014072)

摘  要:目前反演台风内核风场时多采用线性回归方法进行建模,针对基于线性回归法的台风内核风速拟合效果较差的缺点,提出一种基于径向基函数神经网络(RBFNN)和偏微分方程(PDE)结合的红外卫星云图有眼台风内核风速和云图灰度建模方法。首先采用基于测地活动轮廓模型的PDE提取有眼台风的眼壁,获得台风眼壁空间位置和亮度数据;然后结合台风年鉴给出的台风近中心最大风速数据基于RBFNN进行有眼台风内核风速和云图灰度建模。实验结果表明:该算法改善了台风内核风速拟合效果,算法性能优于传统的线性回归法。At present, linear regression model is often used to estimate typhoon inner core wind field. But the fitting effect of typhoon inner core wind speed based on linear regression was bad. Based on infrared satellite cloud image, radial basis function neural network(RBFNN) and partial differential equation(PDE)were used to build a model between typhoon inner core speed and cloud image ′ s gray value. Firstly,typhoon′ s eye wall was extracted by using PDE which based on geodesic active contour model from the infrared satellite cloud image and the eye wall′ s space position and brightness are obtained. Then the maximum wind speed near typhoon center which was recorded by typhoon yearbook was used to build a model between typhoon inner core′ s speed and cloud image′ s gray value by RBFNN. The experimental results show that the proposed algorithm improves the fitting effect of typhoon inner core ′ s wind speed,and the overall performance of the proposed algorithm is better than tradition method of linear regression.

关 键 词:建模 偏微分方程 径向基函数神经网络 台风云图 

分 类 号:TN219[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象