检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学电子工程学院,西安710071 [2]上海师范大学,上海200235
出 处:《机械科学与技术》2014年第6期864-869,共6页Mechanical Science and Technology for Aerospace Engineering
基 金:国家自然科学基金项目(61171088);福建省教育厅A类科技计划项目(JA12303);福建省科技厅重点科技计划项目(2013N0032)资助
摘 要:为提取小波包频带中的有效故障信息,基于Fisher线性测度提出一种新的特征矢量优化方法。轴承振动信号经小波包分解后,各子频带数据片段的能量值作为参数构建特征矢量。使用差异性和相似性优化相结合方法,分别选出不同轴承状态下Fisher距离较大的小波包频带,以及同种轴承状态下Fisher距离最小的频带,提取出易于区分不同轴承状态的故障信息。故障辨识使用连续型隐马尔可夫模型,在3种故障程度下实现了轴承正常状态、滚动体故障、内圈和外圈故障的有效判别,辨识精度大于94%。比较实验表明文中方法的辨识精度优于文献方法。A new approach of feature vector optimization for extracting the effective fault information was presented using Fisher linear distance. Firstly,the vibration signals were decomposed into the sub-bands with the wavelet packet transform,and the energy of which was used to construct the feature vectors. Then,the methods of difference and similarity optimization were applied to select the sub-bands which have greater Fisher distance between the different bearing statuses,and meantime has the minimal Fisher distance within the same bearing status. The fault identification applied the continuous hidden Markov models,which successfully identified normal status,ball fault,inner race fault and outer race fault in three kinds of fault severities,and the identification accuracy was greater than 94%. The result of compared experiments showed the identification accuracy of the presented method was better than the reference method.
关 键 词:特征矢量优化 小波包分解 隐马尔可夫模型 故障诊断
分 类 号:TN911[电子电信—通信与信息系统] TP206[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112