检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈寿文[1]
出 处:《计算机工程与应用》2015年第5期58-64,250,共8页Computer Engineering and Applications
基 金:安徽省高校优秀青年人才基金项目(No.2012SQRL154);滁州学院科研启动基金资助项目(No.2014qd007)
摘 要:针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整了速度更新公式。通过几个典型测试函数仿真及Friedman和Holm检验,实验结果显示DCAEPSO比其他粒子群算法寻优能力强。This paper proposes a new Particle Swarm Optimization(PSO)algorithm based on two aspects of improvement in standard PSO to avoid the problems about premature convergence and low precision. It adjusts velocity updating formula by embedding self-adaptive exponential inertia weight function and two weighted centroids, which are called the population centroid and the best individual centroid. Through the simulation of several typical benchmark functions, Friedman's tests and Holm's tests, the experimental results indicate that the proposed algorithm not only has advantages of convergence property over standard PSO and some other modified PSO algorithms, but also outperforms other algorithms proposed in this paper for searching global optimal solution.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222