基于Surfacelet变换和动态纹理的烟雾检测  被引量:1

Smoke Detection Based on Surfacelet Transform and Dynamic Texture

在线阅读下载全文

作  者:叶威[1] 赵俭辉[1,2] 赵洋[1,2] 王勇[1] 

机构地区:[1]武汉大学计算机学院,武汉430072 [2]武汉大学苏州研究院,江苏苏州215123

出  处:《计算机工程》2015年第2期203-208,共6页Computer Engineering

基  金:湖北省自然科学基金资助项目(2009-514);苏州市国际科技合作计划基金资助项目(SH201115)

摘  要:鉴于烟雾检测对火灾预警的重要作用,提出一种基于Surfacelet变换的动态纹理烟雾检测算法。先对图像序列进行Surfacelet变换,再对变换后的系数进行广义高斯建模,获得与系数相对应的模型参数作为特征,最后使用KL距离做相似性度量。与其他3种基于Surfacelet变换的烟雾检测方法进行对比,包括:使用均值和方差作为特征,支持向量机进行分类;使用均值和方差作为特征,欧式距离进行相似性度量;使用广义高斯模型参数作为特征,欧式距离进行相似性度量。实验结果表明,该算法可以提高烟雾检测准确性,降低误检率,有效去除类烟运动物体的干扰。Smoke detection plays an important role in early warning of fire,so one dynamic texture recognition algorithm is proposed in this paper.Firstly,the surfacelet transform is performed on image sequences.Then a generalized Gaussian model is built for the coefficients from Surfacelet transform.The obtained model parameters are regarded as feature vector,and finally the Kullback-Leibler(KL) distance is used as the similarity measurement method.In experiments,three kinds of Surfacelet based smoke detection methods,including the use of mean and variance as feature and SVM classifier for classification;the use of mean and variance as feature and Euclidean distance as the similarity measurement method;the use of generalized Gaussian model parameters as feature and Euclidean distance as the similarity measurement tool,are implemented and used for comparison.Experimental result shows that,compared with other smoke detection methods,the new algorithm has excellent performance and lower false detection rate.

关 键 词:Surfacelet变换 动态纹理 广义高斯模型 KL距离 支持向量机 欧氏距离 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象