基于小世界优化的支持向量机风电功率预测  被引量:6

WIND POWER FORECASTING BASED ON SMALL-WORLD OPTIMIZATION AND SUPPORT VECTOR MACHINE

在线阅读下载全文

作  者:王爽心[1] 李涛[1] 孙东旭[1] 刘如九[1] 

机构地区:[1]北京交通大学机械与电子控制工程学院,北京100044

出  处:《太阳能学报》2015年第3期720-726,共7页Acta Energiae Solaris Sinica

基  金:国家自然科学基金(50776005);中央高校基本科研业务费专项资金(2011JBM103)

摘  要:采用基于实数编码的小世界优化算法(RSWOA)对SVM的惩罚因子C和核函数参数σ进行优化选取,使其具有收敛速度快和全局寻优的优点,提出基于实数编码小世界优化算法的支持向量机改进模型(RSWOASVM)。将该模型应用于实际风场的风电功率预测中,研究表明,RSWOA能快速准确找到SVM模型参数的全局最优解,进而可使RSWOA-SVM改进模型取得较理想的预测精度。Generalizing ability and performance are largely dependent on the choice of key parameters of support vector machine (SVM). The real-coding small-world optimization algorithm (RSWOA) was employed to optimize penalty factor C and kernel parameter σ of SVM in order to make it achieving fast convergence and global optimum. Thus, the improved SVM based on real-coding small-world optimization algorithm (RSWOA-SVM) was proposed. The research results which the new method was applied to the prediction of actual wind power showed that RSWOA can quickly find the global optimum of SVM parameters, and further make the RSWOA-SVM to achieve more perfect forecasting accuracy of wind power.

关 键 词:小世界优化算法 支持向量机 参数寻优 风电功率 预测模型 

分 类 号:TK39[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象