基于NARMA-L2模型的弓网系统振动主动控制  被引量:4

Active Vibration Control of Pantograph- Catenary System Based on NARMA-L2 Model

在线阅读下载全文

作  者:刘仕兵[1] 武磊[1] 朱雪龙[1] 

机构地区:[1]华东交通大学电气与电子工程学院,南昌330013

出  处:《计算机测量与控制》2015年第3期818-820,841,共4页Computer Measurement &Control

基  金:国家自然科学基金项目(11162002)

摘  要:建立简单链型悬挂接触网模型和受电弓系统三元质量模型,并给出了动力学方程;介绍NARMA-L2神经网络模型,将NARMA-L2模型应用到弓网振动控制系统中并给出了主动控制方案;针对列车速度为200km·h-1、250km·h-1、300km·h-1、350km·h-1,分别对控制器控制效果进行仿真研究,得到弓网接触力和受电弓抬升量仿真曲线,对仿真得到的数据从最大值、最小值、平均值、标准差四个方面进行分析,并与没有引入NARMA-L2模型控制所得的仿真结果做了对比研究;对比结果表明:与无NARMA-L2控制相比,在车速为200km·h-1时,弓网接触力标准差降低59.46%,受电弓抬升量标准差降低37.72%;车速为250km·h-1时分别降低60.04%、37.99%;车速为300km·h-1时分别降低59.91%、36.74%;车速为350km·h-1时分别降低59.53%、35.84%;因此,基于NARMA-L2神经网络的弓网振动控制系统可以大大降低弓网振动幅度,增强弓网耦合性,从而使弓网接触更稳定,实现更好的受流。Simple chain suspension eatenary system model and three--dimensional mass model of pantograph system were established, kinetics equation was given in this paper. NARMA--L2 neural network model was introduced and applied to the pantograph--catenary vi bration control system and an active control proposal was designed. Simulation research were done as to the effect of controller for speed of 200 km · h^-1 , 250 km · h^-1, 300 km · h^-1 , 350 km · h^-1. Also the simulation get pantograph--catenary contact force and pantograph uplift curve, simulation data was analyzed from four aspects maximum, minimum, average and standard deviation. Comparative study was made without introduction of NARMA--L2 model. Comparative results show that compared with the control without NARMA--L2 model, standard deviation of pantograph--catenary contact force lower 59.46%, and that of pantograph uplift lower 37.72% for the speed of 200 km· h^-1. Respectively, it lower 60.04M and 37.99% when 250 km · h^-1, 59.91% and 36.74% when 300 km· h^-1, 59.53% and 35.84 % when 350 km· h^-1. Therefore, pantograph vibration control system based on NARMA L2 neural network can greatly reduce the vibration amplitude of pantograph--eatenary, enhance pantograph--eatenary coupling, thus achieve more stable pantograph--catenary con- tact and better current collection.

关 键 词:弓网 神经网络 振动主动控制 仿真研究 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象