检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001 [2]中国航天科工集团二院706所,北京100854
出 处:《应用科学学报》2015年第1期32-40,共9页Journal of Applied Sciences
基 金:国家自然科学基金(No.61104036)资助
摘 要:强跟踪滤波算法由于对判断滤波发散的阈值设置较小,以较大概率产生渐消因子而导致对滤波增益过调节,最终对状态估计不够平滑.在分析强跟踪滤波算法运行机理的基础上,提出了一种改进的强跟踪滤波算法.通过适当提高判断滤波发散的阈值,有效降低了误判滤波发散的概率,并能针对不同维数量测方程确定不同的弱化因子,避免了凭经验加入弱化因子解决这一问题的缺陷.数值仿真结果表明:改进的强跟踪滤波算法对系统状态突变不但具有较强的鲁棒性,而且能有效保持滤波精度和对状态估计的平滑性,从而验证了该算法的可行性和有效性.Strong tracking filtering(STF) sets small threshold to judge filtering divergence leading to fading factor with high probability, which causes excessive regulation of the filtering gain and makes the state estimation curve lack smoothness. By analyzing the operation mechanism of STF, improved STF(ISTF) is proposed. The proposed algorithm reduces probability of misjudging filter divergence by appropriately increasing the threshold. It determines the softening factor to suit different dimensions of the measurement equation, and thus avoids the disadvantages of the previous methods that determine the softening factor according to experiences. Simulation indicates that ISTF can maintain filtering accuracy and estimation smoothness, and is robust against sudden changes in the system state, showing its feasibility and effectiveness.
分 类 号:V556[航空宇航科学与技术—人机与环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28