检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学机械工程学院,四川成都610031
出 处:《机床与液压》2015年第5期49-52,共4页Machine Tool & Hydraulics
基 金:中央高校基本科研业务费专项基金资助项目(SWJTU12CX039)
摘 要:在刀具磨损状态监测中,能够提取到的反映不同刀具磨损状态的特征量较大,基于神经网络的状态识别无法去掉冗余特征,会存在训练时间长和准确率降低等问题。针对这些问题,提出基于粗糙集-BP神经网络的刀具磨损状态监测方法,利用粗糙集对特征进行属性约简,去掉冗余信息,从而优化特征,并且减少神经网络的输入端数据,可以缩短神经网络的训练时间和提高识别的准确率。通过对实测刀具数据进行分析,证明了该方法的有效性。In the tool wear condition monitoring,a large number of features reflecting different tool wear states can be extracted.Based on the features of state recognition based on Neural Network unable to remove redundant,the problems of long training time and low accuracy were caused. A tool wear condition monitoring method based on rough set and BP Neural Network was presented by aimed at these problems. By using rough set to reduce attributes,to remove redundant information,and then optimize features were optimized. Moreover the input data of neural network were reduced,and then the training time of neural network was shortened and recognition accuracy was improved. The effectiveness of this method has been proved through the analysis of the tool data from practical monitoring.
关 键 词:刀具状态监测 粗糙集理论 BP神经网络 小波包分析
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145