检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭鹏宇[1,2] 苏昂[1,2] 张红良[1,2] 张小虎[1,2] 于起峰[1,2]
机构地区:[1]国防科学技术大学航天科学与工程学院,湖南长沙410073 [2]国防科学技术大学图像测量与视觉导航湖南省重点实验室,湖南长沙410073
出 处:《光学学报》2015年第3期195-205,共11页Acta Optica Sinica
基 金:国家自然科学基金(11272347);国家973计划(2013CB733100)
摘 要:基于机器学习的思想并充分利用外观信息,提出一种在线选择纹理和形状特征的混合随机朴素贝叶斯视觉跟踪器。构造归一化空间金字塔,通过强度二值特征和金字塔梯度方向直方图二值特征,描述全局与局部区域的纹理和形状;并根据特征描述的二值性和多模性,设计并实现了在线混合朴素贝叶斯分类器。分类器预测类别后验概率生成信任图,跟踪器通过分析信任图实现目标跟踪,并利用极大似然估计和交叉验证实现外观学习和特征选择。选用基准测试集比较同类方法,从性能和复杂度两方面评估了跟踪器。实验结果表明跟踪器对光照变化,部分遮挡等情况具有一定的适应能力,且执行速度较快,存储空间较小。Based on the idea of machine learning and the sufficient appearance, a mixture random Nave Bayes visual tracker with online texture and shape feature selection is proposed. The texture and shape of global and local region is described with binary feature of intensity and pyramid histogram of oriented gradients using normalized spatial pyramid. An online mixture of Nave Bayes classifier is designed and realized according to binary and multimodel description. The classifier predicts the class posterior probability to generate the confidence map, then the tracker analyzes the confidence map to track the object, learns the appearance with maximum likelihood estimation,and selects the feature with cross validation. Compared with homogeneous methods, the tracker is evaluated with performance and complexity based on benchmarks. The experimental results show that the tracker has certain adaption to illumination change and partial occlusion, and fast execution speed as well as little memory space.
关 键 词:机器视觉 机器学习 视觉跟踪器 纹理和形状特征 混合随机朴素贝叶斯
分 类 号:TP187[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15