检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学电子商务与智能服务研究中心,武汉430070
出 处:《计算机应用》2015年第4期1148-1153,共6页journal of Computer Applications
基 金:国家科技支撑计划项目(2012BAH93F04)
摘 要:当前的移动推荐系统只将位置信息作为推荐属性处理,弱化了其在推荐中所起的作用,更重要的是忽略了移动生活服务位置相关性和用户空间运动有界性特征。针对该问题,设计了基于位置簇的用户偏好表示模型和移动生活服务个性化推荐算法。该算法通过模糊聚类得到位置簇,使用遗忘因子调节用户在该位置簇对服务资源属性值的偏好,并且采用概率分布和信息熵理论计算属性权重,按位置簇对用户偏好和服务资源进行匹配得到top-N推荐集。由于位置簇的定义,使得算法给出与用户偏好相似度较高的服务资源。案例分析结果符合这一结论,从而验证了算法的有效性和精确性。Current mobile recommendation systems limit the real role of location information, because the systems just take location as a general property. More importantly, the correlation of location and the boundary of activities of users have been ignored. According to this issue, personalized recommendation technique for mobile life services based on location cluster was proposed, which considered both user preference in its location cluster and the related weight by forgetting factor and information entropy. It used fuzzy cluster to get the location cluster, then used forgetting factor to adjust the preference of the service resources in the location cluster. Then the related weight was obtained by using probability distribution and information entropy. The top-N recommendation set was got by matching the user preference and service resources. As a result, the algorithm can provide service resources with high similarities with user preference. This conclusion has been verified by case study.
关 键 词:移动生活服务 位置簇 模糊聚类 用户偏好 个性化推荐
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15