纯正群并半群簇和密码群并半群簇的上确界  

The Join of Orthogroup Variety and Cryptogroup Variety

在线阅读下载全文

作  者:王正攀[1] 潘慧兰[1] 

机构地区:[1]西南大学数学与统计学院,重庆400715

出  处:《西南大学学报(自然科学版)》2014年第4期39-42,共4页Journal of Southwest University(Natural Science Edition)

基  金:国家自然科学基金青年基金项目资助(11101336);中央高校基本科研业务费专项资金资助(XDJK2013B012)

摘  要:在完全正则半群簇的子簇格中,首先用等式((x0y0)0z0)0=(x0(y0z0)0)0定义了一个子簇,并举例说明它是完全正则半群簇的真子簇,追加等式x(yz)0x(yz)0=(yz0)0x(yz)0和(xy)0z(xy)0z=(xy)0z(x0y)0z,定义前一子簇的又一子簇,并举例说明这3个等式相互独立,证明了这3个等式恰好给出了纯正群并半群簇和密码群并半群簇的上确界.A subvariety of the variety of completely regular semigroups is defined by the identity((x0y0)0z0)0 =(x0(y0z0)0)0.An example is provided to illustrate that the subvariety is proper.Two additional identities,x(yz)0x(yz)0=(yz0)0x(yz)0and(xy)0z(xy)0z=(xy)0z(x0y)0z,are used to define a subvariety of the above subvariety.Examples are given to show that the above three identities are independent on each other.It is proved that the proper subvariety defined by the three identities is the join of the orthogroup variety and the cryptogroup variety.

关 键 词:完全正则半群 纯正群并半群 密码群并半群  同余 

分 类 号:O152.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象