检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学与技术大学电子工程与信息科学系,安徽合肥230027 [2]中国科学院电磁空间信息重点实验室,安徽合肥230027
出 处:《遥感学报》2015年第2期263-272,共10页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金项目(编号:61172154);国家重点基础研究发展计划(973计划)(编号:2010CB731904)
摘 要:结合小波变换及字典学习提出了一种针对高光谱图像的压缩算法。该算法首先通过小波变换构建多尺度样本集,在小波域使用K-均值奇异值分解(K-SVD)方法学习得到原子尺寸不同的多尺度字典,然后在稀疏表示的过程中,定义一个原子使用频次筛选因子,通过统计局部最优波段稀疏表示时原子使用情况,结合筛选因子对字典原子进行优化筛选,使用精简后的字典对其余波段进行稀疏求解,最后针对不同尺度的表示系数采用自适应的量化编码。实验结果表明,与目前常用的3D-SPIHT和其他的多尺度字典学习算法相比,本文算法在中低比特率下,具有更好的重建性能。Compression can significantly decrease hyper spectral images to relatively manageable sizes, thereby facilitating their efficient transmission and storage in aground station. Dictionary learning and sparse representation perform well in natural image compression. This study focuses on the properties of hyper spectral images and presents an efficient compression algorithm based on wavelets and dictionary learning for hyper spectral images. First, multi-scale training samples are built through wavelet decomposition; the training samples of each scale are sent to the K-SVD dictionary learning model to obtainmulti-scale dictionaries by joint training, the errors and update the multi-scale dictionary. Second, statistical analysis is performed on the used dictionary atoms in local optimal bands in the process of sparse coding, and a frequency selection factor is introduced. The statistical information and frequency selection factor are then used to decrease on-used or rarely used atoms in the dictionary. Other bands can be sparsely and easily represented using the simplified dictionary. Finally, the simplified dictionary is directly entropy coded, and the DC component is entropy coded after 4-neighborhood prediction and differential pulse code modulation. The indices of the coefficients of each scale are rearranged according to the numerical value and are separately entropy coded after DPCM. The sparse coefficients are also rearranged accord- ing to the sequential changing of indices and are entropy coded together after adaptive quantization. Results show that the proposed scheme outperforms the traditional spatial and other multi-scale dictionary learning algorithms. It is also much better than 3D-SPIHT in terms of bit rate distortion performance. As JPEG2000 ( Part 2) largely benefits from the embedded block coding with optimized truncation strategy, it can achieve a better performance than our scheme. However, our proposed is much faster than JPEG2000 (Part 2 ). This study designed a novel hyper spectral im
关 键 词:图像压缩 高光谱图像 多尺度字典学习 K-SVD 小波变换
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.63.86