检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭怡书[1] 颜云辉[1] 赵久梁[1] 张尧[1]
机构地区:[1]东北大学机械工程与自动化学院,辽宁沈阳110819
出 处:《东北大学学报(自然科学版)》2015年第4期465-468,共4页Journal of Northeastern University(Natural Science)
基 金:国家自然科学基金资助项目(51374063);中央高校基本科研业务费专项资金资助项目(N120603003)
摘 要:利用周围邻域信息约束进行加权稀疏表示以达到行人检测的目的.采用Fisher判别字典学习的方法,得到一个能够更好地提取图像的具有更强辨别性稀疏特征的字典,利用图像中周围信息约束,求得该字典表示下的稀疏特征,并根据对当前图像块的稀疏表示残差进行分类.INRIA数据库的实验表明非局部稀疏特征具有明显的区分能力.同时,对行人目标进行邻域约束,能够有效地表示出同目标区域的稀疏特征.By using the constraints around the neighborhoods for weighted sparse representation,the pedestrian detection problem was solved. A dictionary with a strong extracting discriminate and sparse features power was obtained by using the Fisher discriminant dictionary learning method.With the constraint of the neighborhoods,the image patch was represented as a sparse feature via the dictionary. By computing the representation of the residuals and comparing the residuals with a threshold,the patch label was determined to finish the classification task. The experiments on INRIA person datasets showed that non-local sparse feature has an obvious power of discrimination.The constraint of the neighborhoods makes the sparse feature represented effectively.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15