基于小波包神经网络的岩巷掘进机动载荷识别方法  被引量:7

Dynamic Load Identification Method of Rock Roadheader Based on Wavelet Packet and Neural Network

在线阅读下载全文

作  者:王伟[1] 田慕琴[1] 宋建成[1] 张灵[1] 李东钰[1] 王焱金 金江 

机构地区:[1]太原理工大学煤矿电气设备与智能控制山西省重点实验室,太原030024 [2]山西天地煤机装备有限公司,太原030006

出  处:《煤矿机械》2015年第3期238-241,共4页Coal Mine Machinery

基  金:国家863计划资源环境技术领域重大项目(2012AA06A405);高等学校博士学科点博导类专项科研基金(20111402110010)

摘  要:针对岩巷掘进机工作时负载多变,动载荷实时识别难度大等问题,提出了一种基于小波包特征能量的神经网络动载荷识别新方法。实时采集截割机构的振动信号、截割电动机的电流及液压缸压力信号,应用小波包分解得到相应信号的特征量,并将其作为神经网络的输入样本,训练神经网络并对网络进行测试。结果表明,动载荷实时识别准确率可达0.93,该识别方法能够满足动载荷实时识别系统的要求。In order to solve the problems in rock road-header such as changing loads, difficult dynamic load real-time identification, a recognition method based on wavelet packet and neural network was proposed. The vibration signals, the current and hydraulic cylinder pressure signals were collected in real-time. The feature vectors of the corresponding signals, which were chosen as input values for the neural network, were gained through wavelet packets decomposition. It has been shown by experiments that the accuracy rate of dynamic load real-time identification is up to 0.93 and the identification method can meet the requirement of dynamic load real-time identification system.

关 键 词:岩巷掘进机 小波包 神经网络 动载荷识别 

分 类 号:TD421.5[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象