检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王伟[1] 田慕琴[1] 宋建成[1] 张灵[1] 李东钰[1] 王焱金 金江
机构地区:[1]太原理工大学煤矿电气设备与智能控制山西省重点实验室,太原030024 [2]山西天地煤机装备有限公司,太原030006
出 处:《煤矿机械》2015年第3期238-241,共4页Coal Mine Machinery
基 金:国家863计划资源环境技术领域重大项目(2012AA06A405);高等学校博士学科点博导类专项科研基金(20111402110010)
摘 要:针对岩巷掘进机工作时负载多变,动载荷实时识别难度大等问题,提出了一种基于小波包特征能量的神经网络动载荷识别新方法。实时采集截割机构的振动信号、截割电动机的电流及液压缸压力信号,应用小波包分解得到相应信号的特征量,并将其作为神经网络的输入样本,训练神经网络并对网络进行测试。结果表明,动载荷实时识别准确率可达0.93,该识别方法能够满足动载荷实时识别系统的要求。In order to solve the problems in rock road-header such as changing loads, difficult dynamic load real-time identification, a recognition method based on wavelet packet and neural network was proposed. The vibration signals, the current and hydraulic cylinder pressure signals were collected in real-time. The feature vectors of the corresponding signals, which were chosen as input values for the neural network, were gained through wavelet packets decomposition. It has been shown by experiments that the accuracy rate of dynamic load real-time identification is up to 0.93 and the identification method can meet the requirement of dynamic load real-time identification system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249