基于简化CKF/降维CKF混合滤波的非线性对准技术研究  被引量:2

Research on Nonlinear Alignment Technology with Mixed Filter Based on SCKF/RDCKF

在线阅读下载全文

作  者:黄湘远[1] 汤霞清[1] 武萌[1] 高军强[1] 

机构地区:[1]装甲兵工程学院,北京100072

出  处:《弹箭与制导学报》2015年第1期19-23,28,共6页Journal of Projectiles,Rockets,Missiles and Guidance

摘  要:为了降低非线性对准的计算量而不损失对准精度,针对容积卡尔曼滤波(CKF)采样点数与状态维数成正比、计算量较大的问题,提出了基于简化CKF/降维CKF混合滤波的非线性对准方法。利用大失准角模型和基于线性观测方程的简化CKF算法进行水平对准;使用大方位失准角模型和降维CKF完成精对准。仿真结果表明,该方法摆脱了CKF算法的"维数灾难"和降维CKF对准应用条件限制,能够完成任意失准角下的初始对准并获得较高对准精度,具有重要的工程应用价值。In order to reduce calculation amount and keep alignment precision of nonlinear alignment,the problems that the sample points are directly proportional to state dimension and the calculation amount is large in cubature Kalman filter( CKF),a new alignment algorithm with mixed filter based on simplified CKF( SCKF) and reduced dimension CKF( RDCKF) proposed. The level alignment finished by a large misalignment angle model and SCKF without coarse alignment; the fine alignment fulfilled by a large azimuth misalignment angle model and RDCKF based on the level alignment. The simulation result shows that this way two disadvantages that CKF's"dimension problem"and RDCKF's application limitation. It is available on any misalignment angle and has higher precision,and with important engineering application value.

关 键 词:大失准角 初始对准 降维容积卡尔曼滤波 简化容积卡尔曼滤波 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象