检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]柳州职业技术学院机电工程系,广西柳州545006 [2]西北农林科技大学机械与电子工程学院,陕西杨凌712100
出 处:《农机化研究》2015年第10期24-28,33,共6页Journal of Agricultural Mechanization Research
基 金:国家"863计划"项目(2013AA10230402);陕西省自然科学基金项目(2014JQ3094);西北农林科技大学本科生优质课程建设项目(2012)
摘 要:为了准确识别成熟的西红柿目标,提出了一种模糊C-均值聚类算法(Fuzzy Clustering Means,FCM)的西红柿目标分割方法。该方法首先利用FCM算法对西红柿图像进行模糊聚类,并对聚类后的果实图像与丢失的部分目标图像进行相加,以得到更加完整的西红柿目标;然后对西红柿目标进行二值化、去噪、开运算与闭运算等处理,完成西红柿目标的分割。为了验证算法的有效性,利用20幅图像进行了试验并与K-means算法和Otsu算法分割效果进行了对比。结果表明:利用文中算法所分割出的西红柿目标最高分割误差率均低于Kmeans算法和Otsu算法,平均分割错误率为1 6.5 5%,比K-means算法低了3.5 6%,比Otsu算法低了1 2.8 0%。这表明,将该方法应用于西红柿目标的识别是可行的。In order to identify tomatoes accurately , an identification method of tomatoes from natural scenes based on fuzzy clustering algorithm was presented .First, tomato image was clustered by using FCM algorithm .Then, miss-clus-tered target was added to fruit image after clustering , which could help to get a more complete target .Finally , binaryza-tion , de-noising , and morphology operations such as image open and image close were used to complete the segmentation of tomato targets .In order to verify the validity of this algorithm , a test was conducted by using proposed algorithm with 20 tomatoes images and compared with K-means algorithm and Otsu algorithm respectively .The experiment results show that the highest error segmentation rate of the proposed algorithm was lower than those of K -means algorithm and Otsu al-gorithm, the average error rate of the proposed algorithm was 16.55%,3.56% less than that of the K-means algorithm and 12 .80%.less than that of the Otsu algorithm.In conclusion , the proposed algorithm is feasible in recognizing toma -toes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28