检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院静电与电磁防护研究所,河北石家庄050003 [2]总装备部工程兵军事代表局驻武汉军事代表室,湖北武汉430073 [3]总装备部沈阳军事代表局驻哈尔滨地区代表室,黑龙江哈尔滨150000
出 处:《河北科技大学学报》2015年第2期157-162,共6页Journal of Hebei University of Science and Technology
基 金:国家自然科学基金(51277181)
摘 要:针对传输线脉冲(TLP)测试方法实施过程工作量较大、测试结果与实际情况相符程度较差的问题,提出一种基于递归神经网络建模的电磁脉冲响应预测方法。该方法基于TLP测试系统,增加机器模型静电放电和人体金属模型静电放电两类注入电磁脉冲,分别建立Elman,Jordan神经网络以及它们的组合Elman-Jordan神经网络对NUP2105L型瞬态抑制二极管(TVS)进行建模,预测不同脉冲条件下TVS的响应。仿真结果表明,递归神经网络建模效果好、运算效率高。Due to the larger workload in the implementation process and the poor consistence between the test results and actual situation problems when using the transmission line pulse (TLP) testing methods, a modeling method based on the recurrent neural network is proposed for EMP response forecast. Based on the TLP testing system, two categories of EMP are increased, which are the machine model ESD EMP and human metal model ESD EMP. Elman neural network, Jordan neural net-work and their combination namely Elman-Jordan neural network are established for response modeling of NUP2105L transient voltage suppressor (TVS) forecasting the response under different EMP. The simulation results show that the recurrent neural network has satisfying modeling effects and high computation efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.121