基于时间序列模型的粒子滤波行人跟踪算法研究  被引量:1

Particle Filter Tracking Moving Pedestrian Bsed on Adaptive Time Series Models

在线阅读下载全文

作  者:王双红[1] 张朋[1] 

机构地区:[1]中原工学院,郑州450007

出  处:《计算机测量与控制》2015年第5期1613-1616,1620,共5页Computer Measurement &Control

基  金:河南省教育厅科学技术研究重点项目(12B510037;13B510296);河南省科技厅科技攻关计划项目(142102210579);郑州市科技局科技攻关项目(141PPTGG363)

摘  要:针对行人运动的随机性导致运动状态模型适应性差和人在行走过程中可能发生短时全部或局部遮挡导致行人跟踪算法精度较低的问题,提出基于时间序列模型的粒子滤波行人跟踪算法;建立了行人运动时间序列模型;给出了基于对视频序列初始帧的检测,确定行人的位置、宽高等作为跟踪先验信息的方法;由先验信息计算加权颜色直方图构建初始粒子群分布,并利用时间序列运动模型预测粒子在下一时刻的状态分布,并更新粒子权值;根据有效粒子的个数判断是否进行重采样;最后由所有粒子的加权和估计行人的运动状态;仿真实验表明:文中提出根据行人的运动轨迹时间序列运动模型可使行人的状态估计更准确,预测误差进一步减小,预测精度得到了提高。Aiming at the poor adaptability of the movement state model because of the random pedestrian movements and the less pedes- trian tracking algorithm accuracy caused by the short--time wholly or partially obscured movements of the pedestrian. First, the time series model of pedestrian movement is established, then the method of the achievement of the tracking the prior information is established by detec- ting the initial frame of the video sequence to determine the location and the wider, and etc. The weighted color histogram is calculated based on the prior information to the initial particle size distribution, and the distribution of the next time particle state is predicted by use of the time--series model, the particle weights is also updated. Whether resembling or not is depend on the number of effective particles. Finally, the pedestrian motion state can be estimated based on the weighted sum of all particles. Experiments show that improved particle filter algo- rithm allows a more accurate estimate of the pedestrian movement .

关 键 词:时间序列 粒子滤波 行人跟踪 颜色直方图 ARMA 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象